NUVISAN The Science CRO

High-throughput pathway screening and target deconvolution of novel oncogenic YAP/TAZ signaling pathway inhibitors

Keith Graham^{1,2}, Philip Lienau¹, Benjamin Bader^{1,2}, Stefan Prechtl^{1,2}, Jan Naujoks^{1,2}, Ralf Lesche^{1,2}, Julia Kuehnlenz¹, Krzysztof Brzezinka^{1,2}, Lisette Potze¹, Francesca Zanconato³, Barbara Nicke^{1,2}, Anna Montebaur¹, Holger Steuber^{1,2}, Andreas Steffen¹, Andreas Schlicker¹, Philipp Buchgraber¹, Nico Braeuer^{1,2}, Lara Kuhnke¹, <u>Katrin Nowak-Reppel^{1,2*}</u>, Patrick Steigemann^{1,2}, Dominik Mumberg¹, Knut Eis¹, Stefano Piccolo^{3,4}, Martin Lange^{1,2} *katrin.nowak-reppel@nuvisan.com

¹ Bayer AG, Pharmaceuticals, Research & Development, Muellerstrasse 178, 13353 Berlin, Germany
 ² Nuvisan ICB GmbH, Muellerstrasse 178, 13353 Berlin, Germany

³ Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy ⁴ IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy

A pathway high-throughput screen of 3.8 million compounds by using a cellular YAP1/TAZ-dependent luciferase reporter was performed in a 4µl miniaturized 1536-well plate format. The *in vitro* hit compound 1 was identified in this screening campaign as a potent inhibitor of YAP1/TAZ activation. Target deconvolution studies, including cellular thermal shift assays and CRISPR/Cas9-KO screens, elucidated PGGT1B, a subunit of the geranyl-geranyltransferase-I (GGTase-I) complex, as the direct target of YAP1/TAZ pathway inhibitors. GGTase-I inhibitors blocked the activation of Rho-GTPases at the cell membrane, leading to subsequent inactivation of YAP1/TAZ.

Phenotypic screen to identify novel YAP1/TAZ pathway inhibitors

Target deconvolution of BAY-856

CETSA®-MS melting curves

Thermal Shift Assay (TSA) melting curves

Biochemical PGGT1B assay

Cellular Thermal Shift Assay -MS:

(CETSA® experiments were carried out at Pelago Bioscience)

PGGT1B identified as the protein with the highest
shift in melting temperature upon incubation of
MDA-MB-231 cell lysates with BAY-856
(Experiments carried out at Pelago Bioscience)

Thermal Shift Assay:

Direct binding of PGGT1B by BAY-856 confirmed using TSA with recombinant PGGT1B

Biochemical assay:

BAY-856 inhibits the enzymatic activity of purified human GGTase-I

Pooled CRISPR/Cas9 screen:

Knock-down of PGGT1B significantly sensitizes cells to treatment with BAY-856

Mode of action confirmation

BAY-856 inhibits geranylgeranylation and activation of Rho GTPases at the cell membrane

BAY-856 treatment significantly downregulates YAP1/TAZ target gene expression

Mode of Action of BAY-856

 Novel YAP1/TAZ pathway inhibitors identified by cellular pathway high-throughput screen

- Target deconvolution identified GGTase-I as the direct target of the novel YAP1/TAZ pathway inhibitors
- GGTase-I inhibitors block Rho-GTPase signaling and

downstream YAP1/TAZ

Learn More

NUVISAN ICB GmbH Müllerstrasse 178 13353 Berlin Germany

www.nuvisan.com hello@nuvisan.com

insights.nuvisan.com